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ABSTRACT

The wusefulness of water quality simulation models for environmental management is
explored with a focus on prediction uncertainty. Ecological risk and environmental analysis
often involve scientific assessments that are highly uncertain. Still, environmental manage-
ment decisions are being made, often with the support of a mathematical simulation model.
In the area of pollutant transport and fate in surface waters, few of the extant simulation
models have been rigorously evaluated. Limited observational data and limited scientific
knowledge are often incompatible with the highly-detailed model structures of the large
pollutant transport and fate models. Two examples are presented to illustrate data and
knowledge weaknesses that are likely to undermine these large models for decision support.
An alternative to comprehensive structured simulation models is proposed as a flexible
approach to introduce science into the environmental risk assessment and decision making
process.

1. INTRODUCTION

The recent interest in ecological risk assessment in the United States,
and in particular in the US Environmental Protection Agency (EPA), has
led to the realization that scientific uncertainties must be given more
attention than in current practice. Indeed, the USEPA has recently recom-
mended that wuncertainty analyses be a routine part of ecological risk
assessments (Risk Assessment Forum, 1992). This includes risk assessments
that are proposed to make use of detailed pollutant transport and fate
models.

Certainly the new emphasis on uncertainty analysis in environmental
assessments can be viewed as a positive development. In environmental
decision making, there are compelling reasons to always conduct uncer-
tainty analyses, to avoid the mistaken impression that assessments are
precise and well-understood:
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1. Environmental managers need to know the expected uncertainty in the
assessed response. This should be an a priori estimate so that managers
or decision makers may opt for another (more precisely-assessed) end-
point, may consider the value of additional experimentation or monitor-
ing, and/or may hedge decisions away from large losses.

2. EPA, Congress, the public, etc. need to know the extent of critical scientific
uncertainties in environmental assessments, so that future research funding is obtained
and properly focused.

Scientific uncertainty is present in all ecological simulation modeling and
risk assessments. Uncertainty does not prevent management and decision
making; rather, it provides a basis for selecting among alternative actions
and for deciding if (and what) additional information (experimentation
and/or observation) is needed (Morgan and Henrion, 1990; Reckhow,
1994). Uncertainty can be used in this way because the magnitude of the
uncertainty provides a measure of value of information: the smaller the
uncertainty, the more confident (and valuable) is the assessment. Not only
does this hold for formal environmental assessments, but it also reflects our
day-to-day reasoning and decision making. Perhaps the best example of this
is the response to probabilistic forecasts of rain. Many of us adjust our
outdoor plans on the basis of these probabilities. A forecast of "it will rain"
or "it will not rain" is unsatisfactory; we like to know the odds and act
according to our attitude toward risk. This same reasoning should apply to
uncertainty in environmental assessment and decision making.

However, for these and other advantages of uncertainty analysis to be
realized, the analysis of uncertainty must be complete. That is, all scientific
uncertainties in an ecological risk assessment or in pollutant transport and
fate modeling must be estimated and included in the analysis. Failure to be
complete can result in decisions that are not only far from optimal but are
far from satisfactory in outcome. This issue is of immediate concern
because some of the models proposed for ecological risk assessments are
large mechanistic models which have yet to be subjected to thorough
uncertainty analyses. Further, the complexity and size of these models,
coupled with the limited observational data bases that are usually available
to support modeling efforts, may make it unlikely that a thorough uncer-
tainty analysis will be conducted.

The objective of this paper is to examine the particular topic of surface
water transport and fate modeling for environmental risk assessment and
decision support under uncertainty. The examination continues from this
introductory discussion of uncertainty analysis to a review of extant trans-
port and fate models. Difficulties encountered in uncertainty analyses on
existing models are discussed using examples from the Iliterature. Two case
studies are then presented illustrating knowledge and data weaknesses that
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undermine mechanistic transport and fate models. The paper concludes
with a proposal for model selection in ecological risk assessments, in
consideration of the need for uncertainty analysis.

2. WATER QUALITY TRANSPORT AND FATE MODELS

In the previous section, the meaning and importance of uncertainty in
risk assessment and decision making are discussed. With that foundation,
much of the remainder of this paper is devoted to an examination of
surface water transport and fate models as methods for scientific analysis
and prediction. Throughout the following sections, uncertainty in knowl-
edge, data, and ultimately, predictions is considered as a key criterion for
the usefulness of models as methods for assessment and decision making.

Water quality simulation models of pollutant transport and fate are
usually categorized as either mechanistic or empirical. Mechanistic models
(JOrgensen, 1980; Chapra and Reckhow, 1983; Thomann and Mueller,
1987; Ambrose et al., 1988) are based on the modeler's expression of
theory as one or more mathematical equations describing transport and
fate. The mechanistic model is intended to be a correct, although simpli-
fied, description of the system of interest. In contrast, an empirical water
quality model is based on a statistical summary of observational data. The
empirical modeler often uses the observational data to guide in the
selection of the model specification and to provide estimates of parame-
ters. In empirical models, correct theoretical description is of secondary
concern to parameter estimation.

The conventional approach for the determination of parameters for
mechanistic water quality simulation models is for the modeler to use his
judgment in selecting parameters that are consistent with any available
data as well as with tabulations of accepted coefficient values (e.g., Schnoor
et al.,, 1987). Parameters are often selected in a sequential manner (perhaps
based on a sensitivity analysis) and the model is finally judged adequate
based on a visual comparison of predictions and observations. Formal
mathematical optimization is not usually involved.

Parameter estimation in empirical water quality models has traditionally
been undertaken wusing classical optimization methods such as maximum
likelihood or least squares. Judgment is typically involved in the specifica-
tion of the model but not in the actual estimation algorithm.

For the mechanistic models, the governing philosophy is that correct
description of processes in the models enhances the prospect for successful
application of the models to previously unmodeled systems and for extrapo-
lation of the models beyond the bounds of previous application. In addi-
tion, greater mechanistic detail should increase the chance that the model
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describes features of the problem that are of direct management concern.
In theory, this philosophy yields versatile models that may be applied to a
range of problems without major adjustments.

Until recently, none of the mechanistic pollutant transport and fate
models supported by the USEPA included uncertainty analysis. This
changed with QUAL2E-UNCAS (Brown and Barnwell, 1987), which is a
significant contribution by EPA both as simulation model with uncertainty
analysis and as a technical guidance document on the importance and
interpretation of uncertainties. QUAL2E-UNCAS allows the wuser to select
either first-order error analysis or Monte Carlo simulation for error propa-
gation. The current version of the procedure does not include covariance
terms or model equation error; unfortunately, this can result in prediction
error estimates that severely misrepresent overall uncertainty as noted by
Di Toro and van Straten (1979).

One difficulty encountered by Brown and Barnwell in QUAL2E-UN-
CAS is the limited amount of evidence on parameter error terms reported
in the literature. In addition, it is not uncommon that, for the waterbody
being modeled, there is only a small amount of observational data available
to aid parameter selection, and even fewer data are typically left for model
testing and evaluation. As a consequence, opportunities to rigorously assess
success of these models in prediction have been rare and not necessarily
meaningful.

To date, limited survey and anecdotal evidence suggest the following
conclusions concerning the value of large mechanistic transport and fate
modeling for surface water quality management:

1. Scientists and engineers at EPA, and others in the model development
community (primarily at universities and at research laboratories), be-
lieve that these models are wuseful for water quality management. Among
the reasons to support this perspective are the numbers and affiliations
of attendees at EPA shortcourses, and the continued federal financial
support for these models.

2. Scientists and engineers at state and regional agencies (who are the
most common users of water quality simulation models) use the large
mechanistic  models infrequently for water quality management plan-
ning, with the exception of QUAL2E. Most of the routine modeling
work (e.g., wasteload allocation studies) undertaken by these individuals
is done wusing relatively simple models. Among the reasons for lack of
use are that dollars and staff time are insufficient to support this level of
modeling effort and skepticism among this group of model users that the
large mechanistic models are reliable.

3. Many managers and decision makers without technical training in water
quality modeling tend at first to favor use of a large mechanistic model
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for management decisions in the belief that it will yield more accurate,
detailed predictions. Cost of application and difficulty in understanding
the model and results appear to have ultimately led to a mixed view
among members of this group.

4. Successful case studies, in which a mechanistic surface water quality
model other than QUAL2E has aided decision making (and yielded
predictions that have been shown to be fairly accurate) appear to be
rare.

3. HOW "GOOD" ARE EXTANT WATER QUALITY MODELS?

There appear to be few essentially complete error analyses for predictive
applications of surface water quality transport and fate models. The re-
quirements for completeness adopted here are:

1. an estimate of error is chosen for all uncertain model terms, including
inputs, initial conditions, and parameters, and covariances are included
where appropriate;

2. an estimate of model equation error is determined.
These error components are then combined using an error propagation
method such as Monte Carlo simulation or first-order error analysis. An
alternative approach involves:

3. model predictions compared to observations in a predictive scenario.
For this approach to be acceptable, the model must be calibrated on a data
set that is different from the data used for the predictive goodness-of-fit
assessment. Being "different" does not mean simply different years of
observation, as it is possible that essentially identical conditions will be
observed each year. Rather, it means that the forcing functions and/or
response are/ is different, and the degree of difference is assessed statisti-
cally and reported along with the goodness-of-fit results.

To make the error analysis feasible, minor error terms or errors that are
found to have a negligible effect on predictions (perhaps due to insensitiv-
ity) can be ignored. In addition, error distribution shape may be difficult to
characterize with confidence.

As noted above, few models come close to meeting these requirements.
Among empirical models, only the steady-state nutrient input-output mod-
els have undergone reasonably thorough error analyses. For example,
Reckhow and Chapra (1979) and Reckhow et al. (1992) report prediction
error (based on leave-one-out cross-validation) of approximately 30%-40%
for cross-sectional models that predict average growing season total phos-
phorus or total nitrogen concentration based on measured annual loading,
Prediction errors are apt to be higher for applications based on estimated
or predicted loading. Prediction error will be higher still when these simple
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models are linked to statistical models to predict chlorophyll a or Secchi
disk transparency.

Most error analyses conducted on mechanistic water quality models have
also focused on eutrophication. For example, Scavia et al. (1981) applied
error propagation methods to model several trophic state variables in
Saginaw Bay, Lake Huron. In the uncertainty analysis, they included error
terms for: (1) seven of the 22 parameters, (2) all of the eight initial
conditions, (3) all of the five nutrient loads, and (4) the mixing parameter at
the boundary between inner and outer Saginaw Bay segments. The remain-
ing 15 (of 22) parameters and the model equations were assumed known
without error. Results of this analysis indicate that, for the eight state
variables  (phytoplankton,  herbivores, organic-N, ammonia, nitrate-nitrite,
organic-P, PO,, and carnivores), the summer spatially-averaged daily coef-
ficients of wvariation (CV) range from 33% (for organic-N) to 407% (for
nitrate-nitrite), with maximum CVs of 148% to 772%.

Scavia et al. did not include covariances in their error propagation study.
In perhaps the most thorough study of parameter error involving covari-
ances, Di Toro and van Straten (1979), and van Straten (1983), used
maximum likelihood to determine point estimates and covariances for
parameters in a seasonal phytoplankton model for Lake Ontario. Among
the areas of investigation in these studies were the effect of unobserved
state variables (no data on selected variables) on parameter errors, the
importance of parameter covariance terms, and the consequences of fixing
selected parameters at constant values.

Of particular note, Di Toro and van Straten found that prediction error
decreased substantially when parameter covariances were included in error
propagation, underscoring the importance of including covariance terms in
error analyses. This result occurred because, while individual parameters
might be highly wuncertain, specific pairs of parameters (e.g., the half-
saturation constant and the maximum growth rate in the Michaelis-Menten
model) may vary in a predictable way (expressed through covariance), and
thus may be collectively less uncertain. For the error propagation study for
the six nutrient and phytoplankton state variables, Di Toro and van Straten
found the prediction coefficient of variation to range from 8% (for nitrate-
N) to 390% (for ammonia-N), with half of the values falling between 44%
and 91%. Zooplankton prediction errors tended to be much higher.

In a study of uncertainty in modeling transport and fate for synthetic
organics, Halfon (1984) used a mechanistic model to predict mirex behavior
in Lake Ontario. Halfon noted the inadequacy of existing data to specify
certain model functions and estimate particular model terms, and he
attempted to assess the sensitivity of the model to uncertain parameters
and look at prediction error. This analysis was done: (1) with the assump-
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tion that most parameters were known to within +£20%, (2) without a term
for model error (Halfon did identify problems with the model), and (3) with
no measurements of mirex loading (loadings were '"back-calculated").
Halfon set the +20% parameter error level based on his sense of the
literature, and used it as the full range (max-min) on the uncertainty in the
parameters. This seems low (given natural variability, measurement error,
and bias due to model mis-specification) for many of the model terms,
particularly when wused as an estimate of range. Unfortunately, Halfon's
analysis and thoughtful discussion are constrained by data and model
limitations, many of which he identifies.

Additional results presented by Beck (1987) in his thoughtful and thor-
ough review paper indicate that the error levels cited in these studies are
typical of those reported elsewhere. He concludes "Most of the evidence
suggests that the current models of water quality, in particular, the larger
models, are ecasily capable of generating predictions to which little confi-
dence would be attached." Yet despite this view, there appears to be the
belief among many modelers that since the world is complicated, so too
must be our simulation models if they are to be accurate.

In a previous section, models were characterized as either mechanistic or
empirical. In truth, simulation models exist on a continuum on a mechanis-
tic (or empirical) axis, and the degree of mechanism attributed to a given
model is apt to vary among individuals and among disciplines. For example,
among water quality simulation modelers, WASP4 (Ambrose et al., 1988) is
universally considered to be a mechanistic model. However, environmental
chemists and aquatic biologists are apt to view the mathematics for the
individual mechanisms as simplifications of the actual processes, and often
as empirical simplifications, particularly when first-order reactions are
employed. This does not mean that the simplifications are inappropriate.
Rather, it means that "correct process description” should not be cited as
the basis for selection of a "mechanistic" model.

Beck's conclusions concerning the problems with prediction error magni-
tude for the larger models raises interesting questions. Given current
knowledge and available data, at what point does the level of detail in the
model exceed the modeler's ability to produce an acceptable model? Can
we model the transport and fate of every organism in a waterbody? Can we
model the transport and fate of each species of phytoplankton in a
waterbody? Can we model the transport and fate of major phytoplankton
groups (e.g., greens, blue-greens, diatoms) in a waterbody? Can we model
the transport and fate of overall phytoplankton biomass in a waterbody? A
similar series of questions could be posed about space/time detail in a
simulation model.

An interesting analogy to this is found in physics in the area of statistical
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mechanics. Physicists have recognized that, although they have an under-
standing of the theory and general agreement on the equations of motion.
the movement of molecules or particles in gases or fluids is most effectively
modeled by describing aggregate behavior, not by modeling individual
molecules. Probability density functions are therefore used to define aver-
age response and variability in that response. Reif (1965) makes the key
point quite effectively in the introductory chapter of his text on statistical
and thermal physics:

'This  book will be devoted to a discussion of systems
consisting of very many particles... For, although it might be possible to
write down the equations of motion for any one of these systems, the
complexity of a system containing many particles is so great that it may
make the task of deducing any useful consequences or predictions almost
hopeless. The difficulties involved are not just questions of quantitative
detail which can be solved by the brute force application of bigger and
better computers. Indeed, even if the interactions between individual
particles are rather simple, the shear complexity arising from the interac-
tion of a large number of them can often give rise to quite unexpected
qualitative features in the behavior of a system. It may require very deep
analysis to predict the occurrence of these features from a knowledge of
the individual particles... The task of understanding systems of many
particles is thus far from trivial, even when the interactions between
individual atoms are well known. Nor is the problem just one of carrying
out complicated computations... When the systems under consideration
are not too complex and when the desired level of description is not too
detailed, considerable progress can indeed be achieved by relatively simple
methods of analysis.'

This analogy is not intended as a recommendation that only highly
aggregated, statistical behavior is the appropriate level of detail for water
quality models. Rather, it is intended to support a call for thinking about
the level of detail in a model as a compromise between what is desirable
(what would we like to know?) and what is feasible (what is the best we can
do, given current knowledge and available data?). This thought is ad-
dressed again below.

4. PARAMETER DETERMINATION IN MECHANISTIC MODELS

Mechanistic surface water quality models have been developed by scien-
tists and engineers as mathematical descriptions of hydrologic and ecologic
processes. Mechanistic modelers have tended to concentrate on the mathe-
matical expression of theory, probably as a consequence of: (1) scientific
interest and challenge, (2) a belief that the theory was reasonably well-un-
derstood and that this understanding could be expressed mathematically,
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(3) limited available data to fit and evaluate models, and (4) limited
resources to collect additional data. For these reasons, model coefficients
and reaction rates in the models generally characterize actual processes
and are not (at least initially) intended to be empirically-fitted constants.

Since the parameters of mechanistic models are intended to describe
real processes, it may be assumed that an experimental study of a particu-
lar process can yield a parameter estimate that can be directly inserted into
the model. In some cases, it is acknowledged that the rate or coefficient in
the model is affected by other conditions in the waterbody (e.g., turbu-
lence), and thus adjustments must be made to the experimentally-based
value. However, if the model truly is a complete mechanistic description of
the system of interest, then adjustment should be unnecessary. This view is
reflected in Halfon's (1984) statement concerning EXAMS (Burns and
Cline, 1985): "Since the EXAMS model is based on documented formulas,
it does not require calibration."”

However, given the relative simplicity of all simulation models in com-
parison to the complexity of nature, it seems reasonable to question the
legitimacy of any "mechanistic" mathematical description of surface water
quality. Further, given data limitations and scientific knowledge limitations,
it seems reasonable to question even the goal to strive for a model that
need not be calibrated. The correctness of model structure, the knowledge
of the model wuser, and the availability of experimental and observational
evidence all influence parameter choice for mechanistic models. Unfortu-
nately, too often knowledge and data are extremely limited, making choice
of parameters and choice of important model processes guesswork to a
distressingly large degree. The examples presented in the next two sections
are not re-assuring with respect to these two issues: (1) scientific support
for the selection of model parameters, and (2) scientific support for the
specification of appropriate model functional relationships.

5. AN EXAMPLE OF PARAMETER SELECTION APPROACHES:
PHYTOPLANKTON SETTLING VELOCITY

One of the basic parameters in an aquatic ecosystem model is phyto-
plankton settling. An early example of its use is in the model proposed by
Chen and Orlob (1972):

dvc,
dt

dC
=0C, +EAT;_QC1 +(u =R, -5, -M)VC, - .qucze,l (D

where:
V = segment volume (m’)

C, = phytoplankton concentration (g/m’)
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0 = flow volume (m’/t)
E = diffusion coefficient (m?/t)
A = segment surface/bottom area (m®)
u; = phytoplankton growth rate (t")
R, = phytoplankton respiration rate (t")
S, =phytoplankton settling rate (")
M, = phytoplankton mortality rate (t")
u, = zooplankton growth rate (t")
C, = zooplankton concentration (g/m”)
F,; = fractional feeding preference

Other examples are quite similar; a common alternative approach is that phytoplankton

settling is sometimes treated as a velocity (v;) term with an areal loss (see Chapra and
Reckhow, 1983, Chapter 14):

phytoplankton settling (mass/time) = v,;AC,. 2)

To wunderstand some of the problems with the current approach for
parameter determination in mechanistic surface water quality models, it is
useful to examine this process further. For that purpose, "phytoplankton
settling velocity" provides a good example. Phytoplankton, or algae, are
important in aquatic ecosystems, and thus one or more phytoplankton
compartments are found in most mechanistic surface water quality models
concerned with nutrient enrichment. Phytoplankton settling is one of the
key mechanisms for removal of phytoplankton from the water column.

Stoke's law provides the starting point for the mathematical characteri-
zation of phytoplankton settling. Few models, however, employ Stoke's law; instead a
simple  constant  settling  velocity (in units of length/time) expres-
sion is commonly used. To apply a model with this settling velocity term, a
modeler must either measure phytoplankton settling directly, or select a
representative  value from an other study. Since field measurement of
phytoplankton settling is a difficult task, use of literature-tabulated values
is standard practice.

Probably the most thorough listing of suggested values for phytoplankton
settling velocity is Bowie et al. (1985), which presents a two-page table of
reported values, by algal type (see Table 1). Bowie et al. note that under
quiescent conditions in the laboratory, phytoplankton settling is a function
of algal cell radius, shape, density, and special cell features such as gas
vacuoles and gelatinous sheaths. For natural water bodies, water turbu-
lence can be quite important. In two- or three-dimensional models with
hydrodynamic simulation, turbulence is accounted for in the model equa-
tions; in zero- or one-dimensional models, the effect of turbulence on
phytoplankton settling must usually be incorporated into the choice of
settling velocity.
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TABLE 1
Phytoplankton settling velocities (Bowie et al., 1985) *

Algal type Settling velocity Algal type Settling velocity
(m/day) (m/day)
Total phytoplankton 0.05-0.5 Green algae 0.05-0.19
0.05-0.2 0.05-0.4
0.02-0.05 0.02
0.4 0.8
0.03-0.05 0.1-0.25
0.05 0.3
0.2-0.25 0.08-0.18
0.04-0.6 0.27-0.89
0.01-4.0 Blue-green algae 0.05-0.15
0-2.0 0
0-30 0.2
Diatoms 0.05-0.4 0.1
0.1-0.2 0.08-0.2
0.1-0.25 0.10-0.11
0.03-0.05 Flagellates 0.5
0.3-0.5 0.05
2.5 0.09-0.2
0.02-14.7 0.07-0.39
0.08-17.1 Dinoflagellates 8
2.8-6.0
Chrysophytes 0.5
Coccolithophores 0.25-13.6
0.3-1.5

* See Bowie et al. (1985) for original references for reported settling velocities.

That information is typically the extent of technical guidance employed
by modelers when selecting this parameter using a reference like Table 1
from Bowie et al. (1985). The range of options in Table 1 is substantial,
even within a single category (e.g., diatoms) for algal type. The algal cell
size, shape, and other features mentioned in the previous paragraph can
vary from species to species within a single type category, so this may be
responsible for some of the variability in Table 1. However, even if the
modeler who must choose a point estimate has data that identify dominant
species in a water body at a particular time and location, dominance is apt
to change with time and location. Further, models contain at most only a
few distinct phytoplankton compartments, so a choice must still be made
concerning species to be modeled and their characteristics.

Examination of the original references from which Table 1 was created
does little to enlighten the parameter selection process. Most of the
references summarized in Table 1 do not present observational studies on
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phytoplankton; rather, they are simulation model studies, and the wvalue for
phytoplankton settling velocity listed in Table 1 is the value chosen for the
model. In some of the references checked, little or no basis was provided
for the choice. When a rationale for choice was given, it was usually to
adopt or adjust the few values presented in the literature from experimen-
tal studies, or to adopt a value from another modeling study. In one way or
another, it appears that virtually all of the wvalues presented in Table 1 have
some dependency on the early experimental work of Smayda and Boleyn
(1965) and other work by Smayda.

Unfortunately, evaluation studies of simulation models have provided
little insight on good point estimates for this parameter. Observational data
on surface water quality are almost always inadequate for testing functional
relationships and assessing parameter choices. Typical observational data
sets are noisy, with few measurements of each of only a few variables. In
the case of phytoplankton settling velocity, observational data are apt to
consist of phytoplankton cell densities at various dates, times, and areal
locations, but probably not depths. Since phytoplankton are also removed
from the water column through consumption by higher food chain organ-
isms, the observational data do not permit separate identification of the
removal mechanisms.

Given this situation, modelers have relied almost exclusively on the few
experimental studies in the laboratory and their judgment concerning
adjustments to these values. For one-dimensional models without explicit
modeling of hydrodynamics, the chosen value may be as much as an order
of magnitude higher than the laboratory values. Two- or three-dimensional
models with hydrodynamics may incorporate the unadjusted laboratory
value. After early modeling studies presented chosen values, these values
were sometimes adopted in subsequent studies without comment (in effect,
"default" values were identified). Thus, there is probably much less infor-
mation in the columns of Table 1 than implied by the number of values
reported.

In summary, the choices for phytoplankton settling velocity appear to be
based on ad hoc adjustments to a few values measured under controlled
conditions. There is virtually no field confirmation of choices made for
parameters individually (as opposed to collectively). This situation is fairly
typical of the state-of-the-art in surface water quality simulation modeling.

6. FROM SCIENTIFIC KNOWLEDGE, EXPERIMENTATION, AND
OBSERVATION TO MODEL SPECIFICATION: BIODEGRADATION OF PCBS

Several transformations may affect the concentration of synthetic or-
ganic chemicals (SOCs) in natural waterbodies; among them are: volatiliza-
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tion, adsorption and sedimentation, hydrolysis, photolysis, and biodegrada-
tion (Chapra and Reckhow, 1983). Biodegradation covers a number of
distinct processes including mineralization, detoxication, and metabolism.
Biodegradation by-products may be inorganic, or they may be organic
compounds that are simpler or related to the original SOC.

In most natural water bodies, SOCs are at relatively low concentrations.
Bacteria tend to exist at fairly high stable population levels, and they
generally prefer other more abundant carbon sources over SOCs. As a
consequence, the Michaelis-Menten relationship, which is often used to
model uptake and growth, is frequently simplified to a first-order expres-
sion when applied to the biodegradation of SOCs:

biodegradation loss (mass/time) = k, Ve, 3)
where:

k, = first-order degradation rate constant (t")

V = system volume (m”)

¢ = total contaminant concentration (g/m’)

While it has been shown that most SOCs (like PCBs; polychlorinated
biphenyls) are biodegradable under controlled conditions (e.g., in labora-
tory experiments), there is often a great deal of uncertainty concerning the
magnitude, and even the existence, of biodegradation occurring naturally in
waterbodies. As Madsen (1991) notes, "In situ biodegradation of organic
compounds is very difficult to prove." For example, as Chapra and Reck-
how (1983) observe, "many laboratory degradation studies are performed
using microbial populations that have been acclimated to a particular
organic compound. Whether such species would tend to behave similarly in
the lake environment is questionable and makes it difficult to apply some
of the laboratory work to natural situations." Unfortunately, Madsen
(1991) concludes, "The problems of extrapolating from laboratory data to
the field have never been solved despite decades of debate." Even with
these difficulties, biodegradation is frequently included as a transformation
process when models such as WASP4 are used for SOC transport and fate.

In a study of the scientific basis for parameter determination in simula-
tion models, Wolpert et al. (1993) looked at biodegradation and other
processes affecting PCBs in surface waterbodies. Their review of the
mechanistic modeling literature indicated that for the most part, even in
modeling studies with the most thorough databases, the source for the
biodegradation rate constant either was not specified or was based on a
synthesis of literature values. In other words, there did not appear to be in
situ evidence for a particular biodegradation rate.

In their own modeling work on PCB transport and fate in the upper
Hudson River (NY), Wolpert et al. (1993) stated "It is believed that there
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is some biodegradation of PCBs in the sediment [of the Hudson River], but
even that is wuncertain." The biodegradation rate depends on many factors
including temperature, dissolved oxygen, nutrients such as nitrogen and
phosphorus, and the mix and concentration of micro-organisms. Biodegra-
dation may be either aerobic or anaerobic; if biodegradation occurs natu-
rally, it seems plausible that aerobic processes could dominate in the water
column and anaerobic processes could dominate in the sediments.

One problem that confronted Wolpert et al. (1993) in their modeling
study is that PCBs exist not as a single compound, but as 209 congeners.
These congeners are a function of the number and placement of chlorine
atoms bonded to the ten carbon atoms in all PCBs. The congeners not only
vary with chlorine, but they also vary by molecular weight (from 189 to 499
g/mol) and by chemical/physical behavior. Thus, in effect, PCB transport
and fate prediction involves the modeling of 209 compounds. Unfortu-
nately, as Wolpert et al. note, it is difficult to distinguish among congeners
in natural water bodies using conventional monitoring techniques.

The literature on biodegradation rates illustrates one of the problems
with the congeners. Bedard et al. (1986) measured aerobic biodegradation
rate for PCBs in the laboratory. Over a 72-h period, they measured
degradation rates varying from less than 20% to greater than 90%, depend-
ing on congener. As a consequence, the effective first-order aerobic degra-
dation rate for these experiments ranged from less than 0.86 « 10° s' to
greater than 17.7 + 10° s'. The situation is similar for anaerobic degrada-
tion. Under experimentally-controlled conditions, Rhee et al. (1979) found
anaerobic degradation of PCB congeners from Hudson River sediment to
range from 8% to 63% over a 7-month period. This translates to first-order
anaerobic biodegradation rates between 4.5 ¢ 107 s' and 54.0 <« 107 s,
depending upon congener.

Even for a single congener, the measured biodegradation rates can vary.
For two different congener mixtures, Bedard et al. (1986) measured PCB
congener concentrations after exposure to bacteria. For a single congener
(labeled 4, 4') common to both mixtures, the apparent degradation rate
differed. As Wolpert et al. (1993) inquire, "Should this difference be
attributed to:

¢ Measurement error?

* Different biodegradation rates, depending on the mixture of congeners
present and their relative abundance?

* Biotransformation of one congener into another (with fewer chlorine atoms) through
dechlorination, so that the reported differences are only the nef changes in each
congener?"

Focusing on the implications for modeling PCB transport and fate in the
Hudson River, Wolpert et al. (1993) continue, "If the rates do depend on
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the mixture of PCBs present, it is hard to see how to use the reported rates
to predict biodegradation rates in the Hudson River bed with its unknown
mixture of PCB congeners unless each congener is modeled separately and
it is known how different ratios of congener concentrations affect the
biodegradation rates. Clearly, congener-specific degradation rates for all
possible mixtures are unavailable. Our ability to model individual con-
geners is also limited by uncertainty about the initial congener composition
of the river loadings and of the observed water column and sediment
samples. Other reasons for suspecting the laboratory data may not reflect
field conditions accurately include:

o It is likely that laboratory growing conditions are more conducive to
bacterial populations than are river conditions. Populations of PCB-de-
grading bacteria could well be orders of magnitude smaller in the river
than in the laboratory;

e The experiments do not include enough measurements over time to
verify a stationary biodegradation rate constant, as assumed in [the]
model;

* Environmental conditions in the sediment must be expected to differ
from those in the laboratory - for example, the ratio of carbon dioxide
to hydrogen is a particularly sensitive environmental parameter for
bacteria and can vary from place to place in the sediment."

Initial reaction to the uncertainty regarding in situ biodegradation of
PCBs is apt to be one of concern. This may be followed quickly by the
observation that, in fact, PCBs are 209 compounds; thus, why expect that a
single mechanistic model will be adequate for transport and fate? Perhaps
so, yet:

* PCBs are among the most studied SOCs in the environment; thus,
scientific ~ knowledge,  experimental  evidence, and  observational  data
should provide a "best case" for the state-of-the-art in SOC transport
and fate modeling,

* Decisions (including the decision to do nothing) are being made concern-
ing PCBs in the aquatic environment, and models should be considered for decision
support.

Certainly, we must have an understanding of cause-effect relationships
to make reliable predictions of pollutant transport and fate. Predictions
based on statistical relationships alone may work for interpolation in
well-studied  situations (e.g., aggregate response for lake eutrophication),
but they may fail to account for important mechanisms in new situations.
Yet, uncertainties in the mechanistic transport and fate models should
cause us to search for other ways to provide predictive scientific analyses
for decision support. A suggested alternative is presented below.
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7. A PROPOSAL FOR MODEL SELECTION IN DECISION SUPPORT FOR
RISK ASSESSMENT

As noted, prediction uncertainty is apt to be quite large for mechanistic
transport and fate models like WASP4 and EXAMS. Among the reasons
why there continues to be support for large water quality simulation
models, even in a situation of apparently great uncertainty, are: (1) the
belief that correct mathematical descriptions allow extrapolation to other
unmodeled systems, and (2) the desire to fully capture within the model a
complete description of a system from management controls to meaningful
system responses. This second justification for large models presumably
reflects a view that a decision support system should be based on an
automated analysis that minimizes human intervention.

An alternative perspective may be found in the medical diagnosis area.
Decision support may take the form of an expert system that receives
information on symptoms and identifies likely causes. There is no attempt
to replace the physician; rather, the expert system provides information to
the physician to improve decision making. The physician interprets the
evidence, including the output from the expert system, and makes a
judgment and recommendation.

In surface water quality management, the experienced subject matter
scientist may fail to identify patterns in multivariate data that a simulation
model or data analysis may easily interpret. However, the scientist has
experiences to provide insight and to interpret information in a more
flexible way than does the logical but structured simulation model. When
the subject matter scientist is aided by a simple expert system to help reveal
patterns, the result could be both an ability to discover patterns and an
effectiveness in interpreting their consequences. This improved interpreta-
tion may refer both to prediction of system response and to assessment of
the nature and value of sample information to aid decision making.

Thus, one option for the design of a decision support system in environ-
mental management is to specify the nature and scale of information to be
presented to a subject area scientist, who then interprets the information
for decision makers. Given the current state-of-the-art in transport and fate
modeling, is decision making better served by large, detailed simulation
models that describe a system from inputs to meaningful effects, even if the
prediction uncertainty is extremely large? Or, will better decisions result if
simple models are used to provide predictions of aggregate behavior for a
subject matter scientist to interpret detailed response for decision makers?

The roles of: (1) the expert system for decision support, (2) the subject
matter scientist, and (3) the decision maker may be guided by general
criteria, and by certain specific criteria that may differ among subject areas.
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Ideally, as described above, there is interaction between the decision maker
and the subject matter scientist in defining the scope of the analysis. Any
simulation model that provides decision support must have uncertainties of
acceptable magnitude; in some subject areas this may require simple
aggregate-behavior models, while in other areas complex models may be
useful.

The actual choice of simulation models wused within this proposed
decision support system should be based on a compromise between feasibil-
ity and desirability. To see how this might occur, consider the following
hypothetical example as a way to interactively arrive at model choice:

Initially, the "environmental managers" should identify desirable objec-
tives and attributes ("endpoints" or "measures of effectiveness"). The
attributes represent quantities that are measurable (predictable) and mean-
ingful to the issue of concern; for -eutrophication, floating mats of algae
(probably not chlorophyll @, wunless a chla standard exists) is one possible
example.

A possible next step is for the "environmental modelers" to identify the
feasibility of a predictive scientific assessment of the proposed attributes,
based on spatial, temporal, and ecological scales. This should be expressed
in terms of scientific uncertainty (e.g., "We can predict abundance of the
species with a standard error of = 100%").

Then, the environmental managers determine if this is acceptable, given
the value function (e.g., losses or net benefits associated with management
options); it is conceivable that the desired attribute has an undesirable level
of predictive uncertainty (e.g., "We prefer abundance as an endpoint, but
+ 100% is unacceptable. What alternatives can be predicted with greater
precision?").

If the problem is then referred back to the environmental modelers, they
may consider aggregation to reduce uncertainty (e.g., "We can predict
presence/absence to +30%; is that wuseful?"). This type of interaction is
intended to lead to good compromise choices for the level of the analysis
and the nature of the predicted response.

This interplay is critical, but for this interaction to be effective, we need
both scientific uncertainty analyses and some notion of the value function.
The environmental modeler should not solely determine the nature (cost of
effort and level of detail) of the ecological assessment, yet the environmen-
tal manager should not dictate endpoints to the environmental modeler.
There should be frequent interaction, with consideration of uncertainty
and valuation, in order to balance what is desirable with what is feasible.

This decision theoretic approach helps wus assess the value of new
(sample) information; this, too, requires interaction between modelers and
managers. For example, the need for additional experimentation or moni-
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toring is evaluated in terms of the value function (e.g., "Including the cost
of experimentation or monitoring, is the expected utility higher or lower
with additional information?"). In addition, a decision theoretic approach
to environmental risk assessment illustrates the critical role of uncertainty
analysis in the interaction between modelers and managers discussed
above.

8. A CONCLUDING THOUGHT

No one can claim that scientific uncertainty is desirable; yet, no one
should claim that scientific uncertainty is best hidden or ignored. Estimates
of uncertainty in predictions are not unlike the point estimates of predicted
response. Like the point predictions, the wuncertainty estimates contain
information that can improve risk assessment and decision making. The
decision support system proposed above will not eliminate this uncertainty
nor will it change the fact that, due to uncertainty, some decisions will yield
consequences other than those anticipated. It will, however, allow risk
assessors and decision makers to wuse the uncertainty to structure the
analysis and present the scientific inferences in an appropriate way. In the
long run, that should improve environmental management and decision
making.
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